metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.38C24, D12.33C23, 2+ 1+4⋊9S3, Dic6.33C23, Q8○D12⋊9C2, C4○D4.32D6, (C3×D4).37D4, C3⋊6(D4○SD16), C3⋊C8.17C23, (C3×Q8).37D4, D4⋊S3⋊21C22, (C2×D4).118D6, Q8.13D6⋊9C2, C12.270(C2×D4), C4.38(S3×C23), Q8.14D6⋊11C2, D12⋊6C22⋊12C2, C4○D12⋊11C22, D4.19(C3⋊D4), D4.Dic3⋊11C2, D4.S3⋊21C22, Q8.26(C3⋊D4), (C3×D4).26C23, D4.26(C22×S3), C3⋊Q16⋊18C22, C6.172(C22×D4), (C3×Q8).26C23, Q8.36(C22×S3), (C2×C12).119C23, Q8⋊2S3⋊22C22, (C2×Dic6)⋊43C22, (C6×D4).169C22, C4.Dic3⋊17C22, (C3×2+ 1+4)⋊3C2, (C2×C3⋊C8)⋊25C22, (C2×C6).86(C2×D4), C4.76(C2×C3⋊D4), (C2×D4.S3)⋊32C2, C22.7(C2×C3⋊D4), C2.45(C22×C3⋊D4), (C2×C4).103(C22×S3), (C3×C4○D4).29C22, SmallGroup(192,1395)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C4○D4 — 2+ 1+4 |
Generators and relations for D12.33C23
G = < a,b,c,d,e | a12=b2=1, c2=d2=e2=a6, bab=a-1, ac=ca, ad=da, eae-1=a7, bc=cb, bd=db, ebe-1=a3b, dcd-1=a6c, ce=ec, de=ed >
Subgroups: 600 in 258 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, C12, C12, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C4○D4, C3⋊C8, C3⋊C8, Dic6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×C6, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C2×C3⋊C8, C4.Dic3, D4⋊S3, D4.S3, Q8⋊2S3, C3⋊Q16, C2×Dic6, C4○D12, D4⋊2S3, S3×Q8, C6×D4, C6×D4, C3×C4○D4, C3×C4○D4, C3×C4○D4, D4○SD16, D12⋊6C22, C2×D4.S3, D4.Dic3, Q8.13D6, Q8.14D6, Q8○D12, C3×2+ 1+4, D12.33C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C3⋊D4, C22×S3, C22×D4, C2×C3⋊D4, S3×C23, D4○SD16, C22×C3⋊D4, D12.33C23
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 34)(2 33)(3 32)(4 31)(5 30)(6 29)(7 28)(8 27)(9 26)(10 25)(11 36)(12 35)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 40)(21 39)(22 38)(23 37)(24 48)
(1 19 7 13)(2 20 8 14)(3 21 9 15)(4 22 10 16)(5 23 11 17)(6 24 12 18)(25 44 31 38)(26 45 32 39)(27 46 33 40)(28 47 34 41)(29 48 35 42)(30 37 36 43)
(1 4 7 10)(2 5 8 11)(3 6 9 12)(13 22 19 16)(14 23 20 17)(15 24 21 18)(25 34 31 28)(26 35 32 29)(27 36 33 30)(37 40 43 46)(38 41 44 47)(39 42 45 48)
(1 13 7 19)(2 20 8 14)(3 15 9 21)(4 22 10 16)(5 17 11 23)(6 24 12 18)(25 41 31 47)(26 48 32 42)(27 43 33 37)(28 38 34 44)(29 45 35 39)(30 40 36 46)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18)(25,44,31,38)(26,45,32,39)(27,46,33,40)(28,47,34,41)(29,48,35,42)(30,37,36,43), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,13,7,19)(2,20,8,14)(3,15,9,21)(4,22,10,16)(5,17,11,23)(6,24,12,18)(25,41,31,47)(26,48,32,42)(27,43,33,37)(28,38,34,44)(29,45,35,39)(30,40,36,46)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18)(25,44,31,38)(26,45,32,39)(27,46,33,40)(28,47,34,41)(29,48,35,42)(30,37,36,43), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,13,7,19)(2,20,8,14)(3,15,9,21)(4,22,10,16)(5,17,11,23)(6,24,12,18)(25,41,31,47)(26,48,32,42)(27,43,33,37)(28,38,34,44)(29,45,35,39)(30,40,36,46) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,34),(2,33),(3,32),(4,31),(5,30),(6,29),(7,28),(8,27),(9,26),(10,25),(11,36),(12,35),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,40),(21,39),(22,38),(23,37),(24,48)], [(1,19,7,13),(2,20,8,14),(3,21,9,15),(4,22,10,16),(5,23,11,17),(6,24,12,18),(25,44,31,38),(26,45,32,39),(27,46,33,40),(28,47,34,41),(29,48,35,42),(30,37,36,43)], [(1,4,7,10),(2,5,8,11),(3,6,9,12),(13,22,19,16),(14,23,20,17),(15,24,21,18),(25,34,31,28),(26,35,32,29),(27,36,33,30),(37,40,43,46),(38,41,44,47),(39,42,45,48)], [(1,13,7,19),(2,20,8,14),(3,15,9,21),(4,22,10,16),(5,17,11,23),(6,24,12,18),(25,41,31,47),(26,48,32,42),(27,43,33,37),(28,38,34,44),(29,45,35,39),(30,40,36,46)]])
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | ··· | 6J | 8A | 8B | 8C | 8D | 8E | 12A | ··· | 12F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 8 | 12 | ··· | 12 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 12 | 2 | 2 | 2 | 2 | 2 | 4 | 12 | 12 | 12 | 2 | 4 | ··· | 4 | 6 | 6 | 12 | 12 | 12 | 4 | ··· | 4 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | C3⋊D4 | C3⋊D4 | D4○SD16 | D12.33C23 |
kernel | D12.33C23 | D12⋊6C22 | C2×D4.S3 | D4.Dic3 | Q8.13D6 | Q8.14D6 | Q8○D12 | C3×2+ 1+4 | 2+ 1+4 | C3×D4 | C3×Q8 | C2×D4 | C4○D4 | D4 | Q8 | C3 | C1 |
# reps | 1 | 3 | 3 | 1 | 3 | 3 | 1 | 1 | 1 | 3 | 1 | 3 | 4 | 6 | 2 | 2 | 1 |
Matrix representation of D12.33C23 ►in GL6(𝔽73)
64 | 0 | 0 | 0 | 0 | 0 |
71 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 72 | 2 |
0 | 0 | 0 | 1 | 72 | 1 |
55 | 7 | 0 | 0 | 0 | 0 |
6 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 67 | 0 | 61 |
0 | 0 | 67 | 6 | 61 | 12 |
0 | 0 | 6 | 6 | 0 | 0 |
0 | 0 | 12 | 67 | 6 | 61 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 1 | 72 | 1 | 71 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 72 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 72 | 2 |
0 | 0 | 72 | 0 | 72 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 72 | 1 | 71 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 1 |
G:=sub<GL(6,GF(73))| [64,71,0,0,0,0,0,8,0,0,0,0,0,0,0,72,72,0,0,0,1,0,1,1,0,0,0,0,72,72,0,0,0,0,2,1],[55,6,0,0,0,0,7,18,0,0,0,0,0,0,6,67,6,12,0,0,67,6,6,67,0,0,0,61,0,6,0,0,61,12,0,61],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,1,0,0,0,0,72,0,1,0,0,72,1,0,72,0,0,0,71,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,72,72,0,0,72,0,1,0,0,0,0,0,72,72,0,0,0,0,2,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,72,72,0,0,0,72,0,1,0,0,1,1,0,0,0,0,0,71,0,1] >;
D12.33C23 in GAP, Magma, Sage, TeX
D_{12}._{33}C_2^3
% in TeX
G:=Group("D12.33C2^3");
// GroupNames label
G:=SmallGroup(192,1395);
// by ID
G=gap.SmallGroup(192,1395);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,387,184,675,136,1684,235,102,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^12=b^2=1,c^2=d^2=e^2=a^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^7,b*c=c*b,b*d=d*b,e*b*e^-1=a^3*b,d*c*d^-1=a^6*c,c*e=e*c,d*e=e*d>;
// generators/relations