Copied to
clipboard

G = D12.33C23order 192 = 26·3

14th non-split extension by D12 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.38C24, D12.33C23, 2+ 1+49S3, Dic6.33C23, Q8○D129C2, C4○D4.32D6, (C3×D4).37D4, C36(D4○SD16), C3⋊C8.17C23, (C3×Q8).37D4, D4⋊S321C22, (C2×D4).118D6, Q8.13D69C2, C12.270(C2×D4), C4.38(S3×C23), Q8.14D611C2, D126C2212C2, C4○D1211C22, D4.19(C3⋊D4), D4.Dic311C2, D4.S321C22, Q8.26(C3⋊D4), (C3×D4).26C23, D4.26(C22×S3), C3⋊Q1618C22, C6.172(C22×D4), (C3×Q8).26C23, Q8.36(C22×S3), (C2×C12).119C23, Q82S322C22, (C2×Dic6)⋊43C22, (C6×D4).169C22, C4.Dic317C22, (C3×2+ 1+4)⋊3C2, (C2×C3⋊C8)⋊25C22, (C2×C6).86(C2×D4), C4.76(C2×C3⋊D4), (C2×D4.S3)⋊32C2, C22.7(C2×C3⋊D4), C2.45(C22×C3⋊D4), (C2×C4).103(C22×S3), (C3×C4○D4).29C22, SmallGroup(192,1395)

Series: Derived Chief Lower central Upper central

C1C12 — D12.33C23
C1C3C6C12D12C4○D12Q8○D12 — D12.33C23
C3C6C12 — D12.33C23
C1C2C4○D42+ 1+4

Generators and relations for D12.33C23
 G = < a,b,c,d,e | a12=b2=1, c2=d2=e2=a6, bab=a-1, ac=ca, ad=da, eae-1=a7, bc=cb, bd=db, ebe-1=a3b, dcd-1=a6c, ce=ec, de=ed >

Subgroups: 600 in 258 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, C12, C12, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C4○D4, C3⋊C8, C3⋊C8, Dic6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×C6, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C2×C3⋊C8, C4.Dic3, D4⋊S3, D4.S3, Q82S3, C3⋊Q16, C2×Dic6, C4○D12, D42S3, S3×Q8, C6×D4, C6×D4, C3×C4○D4, C3×C4○D4, C3×C4○D4, D4○SD16, D126C22, C2×D4.S3, D4.Dic3, Q8.13D6, Q8.14D6, Q8○D12, C3×2+ 1+4, D12.33C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C3⋊D4, C22×S3, C22×D4, C2×C3⋊D4, S3×C23, D4○SD16, C22×C3⋊D4, D12.33C23

Smallest permutation representation of D12.33C23
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 34)(2 33)(3 32)(4 31)(5 30)(6 29)(7 28)(8 27)(9 26)(10 25)(11 36)(12 35)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 40)(21 39)(22 38)(23 37)(24 48)
(1 19 7 13)(2 20 8 14)(3 21 9 15)(4 22 10 16)(5 23 11 17)(6 24 12 18)(25 44 31 38)(26 45 32 39)(27 46 33 40)(28 47 34 41)(29 48 35 42)(30 37 36 43)
(1 4 7 10)(2 5 8 11)(3 6 9 12)(13 22 19 16)(14 23 20 17)(15 24 21 18)(25 34 31 28)(26 35 32 29)(27 36 33 30)(37 40 43 46)(38 41 44 47)(39 42 45 48)
(1 13 7 19)(2 20 8 14)(3 15 9 21)(4 22 10 16)(5 17 11 23)(6 24 12 18)(25 41 31 47)(26 48 32 42)(27 43 33 37)(28 38 34 44)(29 45 35 39)(30 40 36 46)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18)(25,44,31,38)(26,45,32,39)(27,46,33,40)(28,47,34,41)(29,48,35,42)(30,37,36,43), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,13,7,19)(2,20,8,14)(3,15,9,21)(4,22,10,16)(5,17,11,23)(6,24,12,18)(25,41,31,47)(26,48,32,42)(27,43,33,37)(28,38,34,44)(29,45,35,39)(30,40,36,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18)(25,44,31,38)(26,45,32,39)(27,46,33,40)(28,47,34,41)(29,48,35,42)(30,37,36,43), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,13,7,19)(2,20,8,14)(3,15,9,21)(4,22,10,16)(5,17,11,23)(6,24,12,18)(25,41,31,47)(26,48,32,42)(27,43,33,37)(28,38,34,44)(29,45,35,39)(30,40,36,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,34),(2,33),(3,32),(4,31),(5,30),(6,29),(7,28),(8,27),(9,26),(10,25),(11,36),(12,35),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,40),(21,39),(22,38),(23,37),(24,48)], [(1,19,7,13),(2,20,8,14),(3,21,9,15),(4,22,10,16),(5,23,11,17),(6,24,12,18),(25,44,31,38),(26,45,32,39),(27,46,33,40),(28,47,34,41),(29,48,35,42),(30,37,36,43)], [(1,4,7,10),(2,5,8,11),(3,6,9,12),(13,22,19,16),(14,23,20,17),(15,24,21,18),(25,34,31,28),(26,35,32,29),(27,36,33,30),(37,40,43,46),(38,41,44,47),(39,42,45,48)], [(1,13,7,19),(2,20,8,14),(3,15,9,21),(4,22,10,16),(5,17,11,23),(6,24,12,18),(25,41,31,47),(26,48,32,42),(27,43,33,37),(28,38,34,44),(29,45,35,39),(30,40,36,46)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F4G4H6A6B···6J8A8B8C8D8E12A···12F
order12222222234444444466···68888812···12
size112224441222222412121224···4661212124···4

39 irreducible representations

dim11111111222222248
type+++++++++++++-
imageC1C2C2C2C2C2C2C2S3D4D4D6D6C3⋊D4C3⋊D4D4○SD16D12.33C23
kernelD12.33C23D126C22C2×D4.S3D4.Dic3Q8.13D6Q8.14D6Q8○D12C3×2+ 1+42+ 1+4C3×D4C3×Q8C2×D4C4○D4D4Q8C3C1
# reps13313311131346221

Matrix representation of D12.33C23 in GL6(𝔽73)

6400000
7180000
000100
0072000
00721722
0001721
,
5570000
6180000
00667061
006766112
006600
001267661
,
7200000
0720000
0000720
00172171
001000
0001721
,
7200000
0720000
0007200
001000
00721722
00720721
,
7200000
0720000
000010
00172171
0072000
0072101

G:=sub<GL(6,GF(73))| [64,71,0,0,0,0,0,8,0,0,0,0,0,0,0,72,72,0,0,0,1,0,1,1,0,0,0,0,72,72,0,0,0,0,2,1],[55,6,0,0,0,0,7,18,0,0,0,0,0,0,6,67,6,12,0,0,67,6,6,67,0,0,0,61,0,6,0,0,61,12,0,61],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,1,0,0,0,0,72,0,1,0,0,72,1,0,72,0,0,0,71,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,72,72,0,0,72,0,1,0,0,0,0,0,72,72,0,0,0,0,2,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,72,72,0,0,0,72,0,1,0,0,1,1,0,0,0,0,0,71,0,1] >;

D12.33C23 in GAP, Magma, Sage, TeX

D_{12}._{33}C_2^3
% in TeX

G:=Group("D12.33C2^3");
// GroupNames label

G:=SmallGroup(192,1395);
// by ID

G=gap.SmallGroup(192,1395);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,387,184,675,136,1684,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=b^2=1,c^2=d^2=e^2=a^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^7,b*c=c*b,b*d=d*b,e*b*e^-1=a^3*b,d*c*d^-1=a^6*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
×
𝔽